悟空收录网

量子计算和人工智能:飞跃还是遥远的梦想?


文章编号:391 / 更新时间:2023-11-30 18:00:12 / 浏览:

近年来,人工智能(AI)取得了长足的进步,其工具和算法不但可以分析数据、识别模式并做出预测,而且其分析的准确性也得到了大幅的提升。然而,问题出现了:人工智能技术虽然足够好,但是对于算力提出了更高的要求。因此,我们需要寻求更加先进的技术,例如量子计算,以此来提高算力。

人工智能已经在医疗保健、金融、交通和娱乐等各个领域证明了它们存在的价值。机器学习算法可以处理大量数据,并随着时间的推移进行学习和改进。深度学习是机器学习的一个子集,它使得神经网络能够识别模式并高精度地做出决策。不难发现,人工智能已经成功地解决了很多复杂的问题,并且正在不断演进。

此外,随着技术的发展,人工智能已经易于各个行业和领域使用且。它们能够在传统计算机上运行。由于这些计算机得到了广泛使用,并且价格相对便宜,因此可以非常方便的让用户部署各种应用程序,为企业和社会带来直接利益。既然人工智能如此优秀,也许就不需要量子计算机的帮助了。

然而,目前的量子计算仍处于起步阶段。当今,量子计算机的量子位数量有限,维持其量子状态(称为相干性)是一项重大挑战,这也限制了可以执行计算的复杂性。

此外,由于量子计算机并不是传统计算机的升级,因此它们需要全新的算法。例如,传统的机器学习模型(例如神经网络)是通过根据输入数据调整参数(权重和偏差)来进行训练的,旨在最小化模型预测与实际输出之间的差异。复杂的模型具有数百万或数十亿个参数,并通过梯度下降的过程进行调整,以此来确定改变参数导致最小化的差异。

然而,测量或估算量子计算机中的梯度异常困难,尝试在量子计算机上使用传统算法注定会失败。因此,采用量子计算机就需要全新的算法。虽然量子计算的前景广阔,但由于开发这些算法是一项复杂工作,因此目前仍处于早期阶段。据悉,一种称为“储层计算”的新型机器学习算法,正在利用独特的量子特性,在分类和预测应用中取得良好结果。

目前,量子计算机所擅长的领域之一是生成随机数。

在传统计算机中,随机数是使用算法或从某些外部随机源(如大气噪声)生成的,这些数字并不是真正随机的:如果我们知道算法及其初始条件,就可以预测所有算法将生成的数字。相比之下,量子力学的核心原理——叠加——量子计算机可以生成真正的随机数。叠加表明,一个量子比特可以同时存在于多种状态,并且在测量时,结果本质上是随机的。

生成建模是一种无监督机器学习方案,可以从这种随机性中受益。量子计算机可以创建很难复制的统计相关性,使其成为该应用的理想选择。这种生成模型可用于解决许多问题,例如投资组合优化,其中生成模型试图复制算法发现的高性能投资组合,从而杜绝投资组合的风险,因此相比传统算法发现的风险低得多。实际上,类似的用途已被建议用于药物发现的分子生成,甚至工厂车间的调度。

尽管存在很多挑战,量子计算在人工智能领域的潜力仍然巨大。量子机器学习可以在更短的时间内对更大的数据集进行分类,而量子神经网络可以以传统神经网络无法做到的方式处理信息。

虽然现有的人工智能对于当今的许多应用来说功能强大且实用,但量子计算代表了一个新领域,有可能推进该领域的发展。然而,由于量子计算仍然处于早期阶段,因此使用用量子计算的道路是漫长且充满挑战的。量子计算机可能还需要一段时间才能变得更强大,并准备好在人工智能中广泛使用。在那之前,企业的重点是最大限度地发挥现有人工智能的优势,同时继续探索量子计算提供的令人兴奋的可能性。

北京市海淀区中关村南1条甲1号ECO中科爱克大厦6-7层

北京市公安局海淀分局备案编号:110108002980号营业执照

我关注的话题
相关标签: 人工智能量子计算

本文地址:http://www.wkong.net/article-391.html

上一篇:破解分布式库使用难点数据分片策略...
下一篇:滴滴致歉公布事故原因底层软件出故障,补偿方...

发表评论

温馨提示

做上本站友情链接,在您站上点击一次,即可自动收录并自动排在本站第一位!
<a href="http://www.wkong.net/" target="_blank">悟空收录网</a>